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Abstract

Background: Acute marijuana intoxication can impair motor skills and cognitive functions (e.g., attention, information
processing). However, existing tools (e.g., blood, urine, saliva tests) do not accurately reflect ‘real-time’ acute marijuana
intoxication.

Objective: Considering the absence of screening tools to detect acute marijuana intoxication and impairment-related harms, our
objective is to examine whether integration of smartphone-based sensors with a wearable activity tracker (Fitbit), as more
accessible devices using passive sensing, can enhance detection of episodes of acute marijuana intoxication in real-world
settings. No prior work has determined the potential of utilizing data from both phone sensors and a wearable device to improve
the accuracy of algorithms in detecting acute marijuana intoxication in real-life scenarios (‘outside of lab settings’), nor focused
on developing explainable AI (XAI) to provide insights into the algorithmic decision-making process, specifically in detecting
episodes of moderate-intensive marijuana intoxication, leveraging passive sensing technologies captured in real-world contexts.

Methods: To address these aims, we collected daily data using the Experience Sampling Method (ESM) for up to 30 days from
33 young adults using personal smartphone sensors and a Fitbit, and self-reported marijuana use. Participants provided subjective
ratings of marijuana intoxication within 15 min of starting to use marijuana and during semi-random prompts 3 times per day:
“low-intoxication” (rating?=?1–3) vs “moderate-intensive intoxication” (rating?=?4–10) vs. “not-intoxicated” (rating?=?0).

Results: Using the EXtreme Gradient Boosting Machine classifier (XGBoost) to model this data, our results indicated that the
best model (MobiFit-model), which combined data from off-the-shelf mobile phone and wearable technologies, achieved
accuracy of 99% (AUC=0.99, F1-score =0.85) in detecting acute marijuana intoxication (i.e., subjective sense of intoxication) in
the natural environment. F1-score, which balances sensitivity and specificity, showed a significant improvement of 13% and
11% for the combined model (MobiFit) compared to using Mobile and Fitbit individually, respectively. Explainable AI (XAI)
presented algorithmic decisions which revealed that self-reported moderate-intensive marijuana intoxication was associated with
smartphone sensors and Fitbit features, specifically: elevated minimum heart rate, increased micro-movements, but reduced
macro-movement (i.e., a smaller radius of gyration via GPS), and increased noise energy level around the participants.

Conclusions: This study demonstrates the promise that mobile phone sensors and off-the-shelf wearable devices hold for
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automated and continuous detection of acute marijuana intoxication in daily life. Advanced algorithmic decision-making
processes could provide insight into behavioral, physiological and environmental features’ contributions that may be most
useful, for example, in triggering the delivery of just-in-time interventions to prevent marijuana-related harm; however, in order
to make the algorithm applicable in real-world settings, the usefulness and effectiveness of such algorithms-driven decisions
need to undergo robust evaluation in collaboration with clinical experts.
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Original Paper

Towards Automated, Interpretable and Unobtrusive Detection of Acute
Marijuana  Intoxication  in  the  Natural  Environment:  Harnessing
Smartphones,  Wearables,  Machine  Learning  and  Explainable  AI  to
Empower  Clinical  Decision  Support  for  Just-In-Time  Adaptive
Interventions 

Abstract

Background. Acute marijuana intoxication can impair motor skills and cognitive functions (e.g., 
attention, information processing). However, existing tools (e.g., blood, urine, saliva tests) do not 
accurately reflect ‘real-time’ acute marijuana intoxication. 
Objective. Considering the absence of screening tools to detect acute marijuana intoxication and 
impairment-related harms, our objective is to examine whether integration of smartphone-based 
sensors with a wearable activity tracker (Fitbit), as more accessible devices using passive sensing, 
can enhance detection of episodes of acute marijuana intoxication in real-world settings. No prior 
work has determined the potential of utilizing data from both phone sensors and a wearable device to
improve the accuracy of algorithms in detecting acute marijuana intoxication in real-life scenarios 
(‘outside of lab settings’), nor focused on developing explainable AI (XAI) to provide insights into 
the algorithmic decision-making process, specifically in detecting episodes of moderate-intensive 
marijuana intoxication, leveraging passive sensing technologies captured in real-world contexts. 
Methods. To address these aims, we collected daily data using the Experience Sampling Method 
(ESM) for up to 30 days from 33 young adults using personal smartphone sensors and a Fitbit, and 
self-reported marijuana use. Participants provided subjective ratings of marijuana intoxication within
15 min of starting to use marijuana and during semi-random prompts 3 times per day: “low-
intoxication” (rating = 1–3) vs “moderate-intensive intoxication” (rating = 4–10) vs. “not-
intoxicated” (rating = 0). 
Results. Using the EXtreme Gradient Boosting Machine classifier (XGBoost) to model this data, our
results indicated that the best model (MobiFit-model), which combined data from off-the-shelf 
mobile phone and wearable technologies, achieved accuracy of 99% (AUC=0.99, F1-score =0.85) in 
detecting acute marijuana intoxication (i.e., subjective sense of intoxication) in the natural 
environment. F1-score, which balances sensitivity and specificity, showed a significant improvement 
of 13% and 11% for the combined model (MobiFit) compared to using Mobile and Fitbit 
individually, respectively. Explainable AI (XAI) presented algorithmic decisions which revealed that 
self-reported moderate-intensive marijuana intoxication was associated with smartphone sensors and 
Fitbit features, specifically: elevated minimum heart rate, increased micro-movements, but reduced 
macro-movement (i.e., a smaller radius of gyration via GPS), and increased noise energy level 
around the participants. 
Conclusion. This study demonstrates the promise that mobile phone sensors and off-the-shelf 
wearable devices hold for automated and continuous detection of acute marijuana intoxication in 
daily life. Advanced algorithmic decision-making processes could provide insight into behavioral, 
physiological and environmental features’ contributions that may be most useful, for example, in 
triggering the delivery of just-in-time interventions to prevent marijuana-related harm; however, in 
order to make the algorithm applicable in real-world settings, the usefulness and effectiveness of 
such algorithms-driven decisions need to undergo robust evaluation in collaboration with clinical 
experts.
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1. Introduction
Acute effects of marijuana use can result in impaired motor skills and cognitive functioning (e.g.,
attention,  information  processing)  [12,  31,  44].  These  acute  marijuana-related  effects  have  been
associated with adverse consequences such as poor academic and work performance, and increased
risk for motor vehicle crashes and fatal collisions [31, 35]. THC (delta-9 tetrahydrocannabinol) is the
principal psychoactive constituent of marijuana. This chemical component binds to receptors in the
brain, which can result in a feeling of “euphoria” or subjective report of feeling “high” [39]. Due to
risks associated with acute marijuana-related impairment caused by THC, there is a critical need to
detect episodes of marijuana-related intoxication in real-time in the natural environment. 

A few studies have used phone sensors or wearable devices to detect acute marijuana consumption. A
lab study (n=10 participants) using smartphone sensors (accelerometer, gyroscope) to detect acute
marijuana use (3% or 7% THC vs placebo) found that gait analysis using support vector machine
resulted  in  accuracy  of  92%  (F1-score  =0.93)  [24].  However,  it  is  unclear  whether  model
performance  pertains  to  validation  or  test  results.  Another  study  developed  an  electrochemical
biosensor ring to simultaneously and rapidly (within 3 minutes) detect salivary THC (minimum of
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0.5 M) and alcohol (minimum of 0.2 mM) [29]. The wearable ring to simultaneously detect THC and               
alcohol was preliminarily validated in the lab using chemical assays, and with 1 participant [29].
Importantly, these studies using smartphone and wearable device to detect acute marijuana use were
both conducted in  lab settings,  highlighting the need for smartphone and wearable sensor-based
research conducted in naturalistic settings to increase ecological validity.

The ability to detect episodes of marijuana use in daily life would support the delivery of Just-In-
Time [47] harm reduction interventions (e.g., avoid driving when intoxicated) [34]. Challenges exist,
however,  in  detecting  acute  marijuana-related  intoxication  [20].  Existing  testing  methods  (e.g.,
blood,  urine,  saliva,  breath)  are  not  useful  for  detecting  acute  marijuana-related  intoxication  or
impairment in real-time [4]. THC could be detected in an individual’s blood or urine for several days
after consumption depending on factors such as recency, frequency, and chronicity of use [4]. Thus, a
person who tests positive for THC might not be intoxicated or impaired at the time of testing [4].
Instead, we propose that passive sensing using personal smartphones could provide a method for
detecting episodes of marijuana use in the natural environment using one’s own subjective report of
marijuana intoxication as ground truth. Our recent paper [55] shows that acute marijuana intoxication
can be detected by mobile phone sensor-based features integrated with time features (e.g., day of the
week, time of day) with 90% accuracy. We advance our previous work [55] by investigating potential
benefits of adding data from a wearable device (Fitbit), leveraging physiological signals to improve
detection of marijuana intoxication in naturalistic environments. 

With a wearable device, we examined heart rate as a physiological marker of acute cannabis 
intoxication because an acute increase in resting heart rate (HR) is a consistent effect of marijuana 
use in lab studies [19, 27, 50]. Specifically, lab research has found that within 2-3 minutes of 
smoking marijuana, there is an acute increase (20-60% dose-dependent) in resting heart rate [27], 
which might represent a "biomarker" of the onset of a marijuana smoking episode. HR peaks 10-15 
minutes after maximum THC levels, followed by a rapid decline [19, 27, 50]. Tolerance to acute 
effects of marijuana on HR may develop (e.g., from a mean increase of 44.6 to 6.6 beats per minute 
after 18-20 days of use) [19, 27, 50]. While between-subject variance is high, study participants have
shown a linear increase in HR with higher marijuana doses in lab studies [19, 27, 50]. The increase in
HR during episodes of marijuana use has been validated in lab settings, but has not yet been explored
in a real-world context. We hypothesized that an acute increase in HR detected by an off-the-shelf 
wearable device (Fitbit) might represent an objective biomarker that is associated with subjective 
reports of marijuana intoxication in daily life.
Our goal in this study was to determine whether data from personal smartphone (e.g., accelerometer, 
GPS) and off-the-shelf wearable (Fitbit) device (e.g., heart rate) can be used to detect subjective 
marijuana intoxication (“feeling high”) in the natural environment using a machine learning 
approach. No prior work has determined whether data collected from the combination of smartphone
sensors and wearable sensor features can be used to detect marijuana intoxication outside of lab 
settings. Since more people own smartphones than a Fitbit device, we tested whether the additional 
“burden” of wearing a Fitbit device is justified for the detection of self-reported marijuana use, and if
so, which Fitbit-derived features provide unique information in improving the accuracy of the best 
performing smartphone-based detection model. Specifically, we tested the performance of different 
types of sensor-based models using (1) only smartphone-based sensors, (2) only Fitbit data, and (3) 
the combination of smartphone-based sensors and Fitbit data. We then used Explainable Artificial 
Intelligence (XAI) to enhance understanding of key features associated with reports of intoxication. 
Identification of smartphone-based sensor and Fitbit features that can be used to accurately detect 
episodes of self-reported marijuana intoxication in the natural environment could ultimately be used 
to trigger Just-In-Time interventions. We hypothesize that the combination of mobile phone and 
Fitbit data (MobiFit model) will have better performance in detecting reports of acute marijuana 
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intoxication compared to Mobile only and Fitbit only models. We also hypothesize that HR and 
activity (e.g., step count) data from Fitbit will be identified as important features contributing to 
detection of subjective intoxication, supporting the potential value and additional burden of 
collecting data from wearable device.

2. Methods
2.1 Recruitment and Participants 

We recruited 33 young adults (ages 18-24, M=19.63, SD=1.80; 60.6% female-identifying) from the 
local community using flyers, ads, and a participant research registry to participate in a study on the 
effects of marijuana on health. The sample included 23 individuals who self-identified as White, 4 as 
Black and 6 as other race/ethnicity (i.e., Asian, Asian Indian, Hispanic or bi-racial). Eligibility 
criteria for study participation were: current marijuana use at least two times per week, mobile phone
ownership, not currently seeking treatment for substance use, no self-reported history of psychosis, 
and not taking any medication or using any medical device (e.g., pacemaker) that could affect heart 
rate. The average age when participants first used marijuana was 16.48 (SD=1.84; range=13-22) and 
the average age of regular marijuana use (i.e., using marijuana at least once per month for at least six 
months) was 17.03 years (SD=1.72). In the sample, 24.2% reported daily marijuana use, 9% reported
use 5-6 times per week, 66.7% reported use 2-4 times per week. Participants had an Android (3%) or 
iOS (97%) smartphone as their primary device.

2.2 IRB Approval and Ethical Consideration 

This naturalistic, observational follow-along study was approved by our university’s Institutional 
Review Board (IRB). As in similar IRB-approved observational studies [8], all participants were 
provided with information regarding local resources (e.g., treatment providers for medical and 
mental health services). The study obtained a National Institutes of Health Certificate of 
Confidentiality. Prior to study participation, research staff obtained written informed consent from 
eligible individuals, and reviewed participant confidentiality and privacy, including risks to 
confidentiality (e.g., possible breach), and methods that the study uses to protect participant 
confidentiality (e.g., secure data transmission protocols, data storage). Research staff made clear to 
individuals during the discussion of informed consent, and throughout the project, that participation 
was voluntary (e.g., that participants could turn off sensors at any time, or withdraw from 
participation at any time). As in other mobile health studies, informed consent included a review of 
the types of data to be collected, for how long data would be collected, and the purpose of data 
collection. As discussed with participants, research data are kept confidential to the extent possible, 
to protect participants’ privacy and confidentiality. Prior research has used GPS with individuals who
engage in illicit substance use (e.g., [13]) with protections for participant confidentiality.
2.3 Study Design
Participants completed a baseline lab assessment (interview, questionnaires, cognitive testing), and 
downloaded study apps from the AppStore or Google Play Store to their personal smartphones. 
Research staff trained participants to use the apps on their smartphone and the study-provided Fitbit 
Charge 2 for the purposes of data collection. Our mobile app delivered Experience Sampling Method
(ESM) questions on marijuana use. The Fitbit Charge 2 is a wrist-worn device that collects data on 
heart rate, physical activity (e.g., step count), and sleep (e.g., time, duration, quality) (see Table 2 in 
Appendix 1 of the Supplementary file for details on Fitbit variables). We collected these passive, 
continuous, and objective sensor streams (smartphone sensor data, Fitbit) and self-reported 
subjective data on marijuana intoxication from participants for up to 30 days. We determined that a 
30-day period would provide sufficient data given that participants would use marijuana multiple 
times during the data collection period based on study inclusion criteria regarding a minimum 
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frequency of marijuana use. At the end of the study, participants completed a debriefing interview. 
Participants were compensated for time and effort in line with other research projects. Participants 
were compensated with US $75 for completing the baseline assessment, and US $25 for completing 
the study exit interview during which they provided feedback on their experiences in the study 
(qualitative data collected in a semi-structured interview). For each day on which >75% of data 
collection (e.g., Fitbit, ESM) was completed, they earned US $10. Participants were not additionally 
compensated for providing self-initiated reports of marijuana use. 

2.4 Mobile Sensing Framework and Applications for Data Collection  

2.4.1  AWARE app  Our AWARE application  is  a  mobile  sensing framework [16]  that  collects  data
passively and continuously from smartphone sensors.  The sensor data can be used to infer human
behavior patterns using different types of sensors: Location (e.g., travelled distance, circadian rhythm),
physical movement (e.g., acceleration, activity), device usage (e.g., unlock, charge, keypress, app usage),
social  patterns  (e.g.,  communication  and  conversations),  and  environmental  (e.g.,  wifi,  Bluetooth,
sound/ambient noise and light) context. To track natural behaviors of young adults in a real-life context,
we built a mobile sensing app based on the AWARE framework that ran in the background 24/7 and
collected passive sensor and meta-data (e.g., time-stamp communication logs) while young adults used
their smartphones in daily life. Our app transferred the collected sensor data to a MySQL database on
our secure server each day. 

2.4.2  Experience  Sampling  Method  (ESM) 
Our mobile phone application also was designed to capture self-reports of marijuana use by young
adults. Two types of surveys were used: self-reports initiated when a participant used marijuana, and
self-reports  that  were  delivered  at  three  fixed  times  each  day (morning:  10am,  afternoon:  3pm,
evening:  8pm)  to  capture  general  behavior  patterns  throughout  the  day  [59].  To  accommodate
participants’ schedules,  survey  response  windows  were  open  for  5  hours;  no  reminders  were
provided to complete surveys after the initial notification was delivered. For self-initiated reports of
marijuana use, participants were asked to initiate a report of marijuana use within 15 minutes of
starting use (since the most common form of use was expected to be smoking or vaping), and to rate
subjective intoxication “How high are you feeling right now?” (0 [none] to 10 [a lot]). Prior work has
used a similar item to rate subjective marijuana intoxication [60]. Reports of marijuana use also
asked the amount of marijuana consumed (in grams or hits), mode of use (e.g., bong, pipe), where
and with whom they were with. After participants reported the start time, a reminder was sent two
hours later to complete the “end session” survey (i.e., report the “end time” of the marijuana use
episode). Participants were asked to report the end time as the time when they no longer felt high, if
applicable. The three fixed time daily surveys (morning, afternoon, evening) collected information
on context (e.g.,  location, companions); time since last marijuana use, marijuana craving, current
mood  and  feelings  (e.g.,  relaxed,  anxious,  sad),  and  other  recent  substance  use  (e.g.,  alcohol,
tobacco). The app transferred participant self-reports to a secure server along with the sensor data
each day.  

2.4.3 Fitbit Charge 2 Participants were provided a Fitbit Charge 2 wearable device, asked to wear it 
as much as possible, and to keep it charged (e.g., charge the device when showering, but wear when 
sleeping). The Fitbit Charge 2 collected physiological data (e.g., heart rate), activity data (e.g., step 
count) and sleep. We hypothesized that heart rate and activity (e.g., step count) data could signal 
episodes of acute marijuana intoxication. We collected Fitbit data from the Fitbit server at the end of 
the study, using the Fitbit API.

2.5 Preparing self-report and Fitbit data for analysis
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An episode of self-reported subjective marijuana intoxication was defined based on the ESM item: 
“How high are you feeling right now?”, rated 0-10 (0= “not high” to 10= “a lot”) [59] [60]. For 
inclusion in the analyses, the start and end time of the marijuana use episode had to be reported, so 
that the episode duration could be computed to permit labeling of the sensor stream. From all 
participants, we received 641 self-reports (Mean=9.86, Median=7 and SD=8.49) and 1556 with no 
marijuana use reports (see Figure 1). Of these 641 reports, 168 had a subjective intoxication rating of
0 and 10, and 6 had no subjective intoxication rating. After removing 6 self-reports where the 
subjective intoxication rating was not reported and 108 duplicate self-reports, we had 527 samples 
remaining. We further excluded reports for which both start and end time were missing (n=6), or 
only start time (n=110) or end time (n=9) was reported, or when the end time was reported as 
occurring earlier than the start time (n=45). We only included marijuana episodes when the duration 
of the smoking session was reported to be less than 3 hours, based on lab research in which 
researchers found that the effect of marijuana lasted < 3 hours [48]. In total, to be conservative in our
analyses, we excluded 136 self-reported marijuana episodes for which the duration of the smoking 
episodes was longer than 3 hours and 1556 with no marijuana use reports [48].

After excluding these episodes, there were 178 self-reported episodes of marijuana use (subjective high
rating of 1-10) and 43 periods of “no marijuana use” (subjective high rating = 0) remaining (n=221).
For our model building, we also had to exclude episodes for which we had no mobile sensor data (n=72),
leaving a total of 221 marijuana self-reports. We also had to exclude episodes for which we had no Fitbit
sensor data (n=17), leaving a total of 50 people. These 50 participants provided 132 marijuana use self-
reports and 909 “no marijuana use” reports. We analyzed all reports from each participant, excluding
those who only reported not using marijuana or had a rating of 0 subjective intoxications when using
marijuana,  leaving  a  total  of  642  with  no  marijuana  use  report  or  who  reported  0  subjective
intoxications  when  using  marijuana  and  34  people.  To  prevent  participants  from  using  Fitbit
incorrectly, we excluded users without heart rate data, leaving a total of 33 people, who provided a total
of 769 events: 640 “no marijuana use” reports and 129 marijuana use self-reports.  

To capture behaviors from young adults in the real-world context when they were not using 
marijuana to compare with times when they reported “feeling high”, we used the afternoon (n=1151),
and evening (n=950) surveys in which the participant reported “no/yes” to marijuana use (n=2111). 
In a total of 1,556 ESM reports, participants reported “no” to the ESM item “Did you smoke 
marijuana since the last report?” and the response to “When was the last time you used marijuana?” 
corresponded to the last self-initiated ESM survey. The 1,556 time-stamped surveys were labeled as 
“0” for the subjective rating of marijuana “high” in the final dataset.
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Figure 1.  Flow chart of participants and data included in analyses
2.6 Extracting Smartphone and Fitbit Sensor Features 

As in prior work, we extracted audio features to detect social interactions [30, 40], which might be 
associated with marijuana use. We computed device usage features such as smartphone unlock 
minutes and length of device interaction sessions. We extracted GPS features to examine movement 
patterns in daily life that might be associated with marijuana use [2, 3, 5, 9]: radius of gyration, time 
at a location cluster, total distances and number of clusters. Acceleration and phone angles were 
extracted. Features were extracted using the conversation plug-in, including attributes such as noise 
and voice. Finally, environmental features, including number of Bluetooth devices contacted, the 
most frequent wifi access point contacted, and light features (e.g., avg., and max. lux) were 
extracted. For almost all features, the minimum (min), maximum (max), average (avg), median 
(med), and standard deviation (std) were calculated. Additional information about the smartphone 
features is available in the Supplementary file.
All sensor feature statistics were extracted using a 5-minute time window. Specifically, we used a 5-
minute segment because when marijuana is smoked in lab studies, there is an acute increase (20-60%
dose-dependent acute increase) in resting heart rate within 2- 3 minutes (on average [19, 27], which 
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might represent a "biomarker" of the onset of a marijuana smoking episode. In addition, participants 
reported marijuana use sessions that lasted an average of 75 minutes (SD=46.2). If we segmented 
data into larger time intervals (e.g., 30-minutes), we would likely include data that were not part of 
episodes of marijuana use, and might "average out" short-lived peaks in sensor data that signal 
important changes associated with marijuana use. 
From the Fitbit, raw data on heart rate, sleep, and steps taken were extracted. To analyze Fitbit heart 
rate (HR) data, we first obtained heart rate and step count data using the Fitbit API, aggregated per-
minute. We removed sensor streams when heart rate had a ‘0’ value. We extracted the following 
feature statistics: average, standard deviation, minimum, median, and maximum of heart rate within 
a 5-minute time window to explore relations between marijuana intoxication (“feeling of moderate-
intensive intoxication” vs. “low-intoxication” vs. “no-intoxication”) and heart rate. We extracted 
resting heart rate by taking HR data when the participant was sedentary (i.e., no steps taken) for more
than 5 minutes. To deepen our insights into HR patterns and their relevance for marijuana 
intoxication detection, we employed the extraction of heart rate feature characteristics, specifically 
the degree of peakedness (kurtosis) and asymmetry (skewness). These features were chosen based on
their potential to offer distinct indicators of physiological changes associated with marijuana 
intoxication, as established in [62]. By analyzing kurtosis and skewness, we aim to capture nuanced 
variations in heart rate patterns that could serve as valuable markers for identifying marijuana 
intoxication within real-world settings that are not directly observable. 
We suggest new features that can be used to identify subjective reports of marijuana intoxication. 
The Fitbit resting heart rate feature was calculated as follows. After aggregation within a 5-minute 
window, if a person did not move (i.e., no steps) within a window of 5 minutes, then the resting heart
rate was computed during the window. The ‘pace’, ‘walk speed’ and ‘sedentary’ features were 
extracted as follows: Pace = time (minutes)/distance (meter), speed walk = 1/pace (meters/minute). 
For ‘moving’, at each minute, we checked whether the person was moving or not. If the number of 
steps per minute was greater than 0, then that particular minute was marked as moving (i.e., 1), 
otherwise not moving (i.e., 0). For the sedentary feature [58], each minute was checked for a 
sedentary bout. If the number of steps per minute was 0 then that particular minute was marked as a 
sedentary bout (i.e., 1) otherwise, it was not a sedentary bout (i.e., 0). Additionally, we extracted the 
number of minutes that someone is awake during the night when their sleep is disrupted the night 
before self-report of marijuana intoxication. (See details in Table 4 in the Supplementary file).
2.7 Ground Truth and Labeling Sensor Data 
To achieve our goal of understanding behaviors in young adults during acute marijuana intoxication, 
we first needed to define a duration of marijuana use to label the mobile sensor data. Using reported 
start and end time of marijuana use, we identified episodes of marijuana use that were equal to or 
less than 3 hours in duration. We excluded the 3 hours of sensor data immediately after the “end 
time” report from analyses because we assumed that an individual could still be under the influence 
of marijuana during this period, which could affect the identification of periods when “no marijuana 
use” was reported (subjective intoxication rating=0). For example, if the duration of a marijuana use 
episode was less than 3 hours, the marijuana use session started at 6:00pm and continued until 
6:30pm for example, then considering the remaining effect of marijuana use, we excluded the 3 
hours from 6:30pm -9:30pm and labeled sensor streams as “no marijuana use” starting from 9:31 pm 
until the next episode of marijuana use occurred. We excluded the 30 minutes prior to the start time 
of reported episodes of marijuana use to be conservative based on findings in our pilot work 
indicating that self-initiated reports of marijuana use might be delayed between 5-15 minutes. For 
collecting non-marijuana candidates, we took sensor samples randomly throughout the day on which 
a participant did not use marijuana (i.e., non-marijuana days) to avoid any mixing of samples from 
marijuana use days. These non-marijuana candidates were then labeled using the morning/afternoon/
evening surveys in which the participant reported “no” to the ESM item “Did you smoke marijuana 
since the last report?” and the response to “When was the last time you used marijuana?” was 5 
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hours prior to the ESM timestamp (see Fig. 2).

Figure 2. Marijuana use episodes and labeling principle

We intended to capture acute marijuana intoxication versus  non-marijuana use.  We labeled self-
reported  episodes  of  marijuana  intoxication  as  a  three-class  classification  problem:  0=  “not
intoxicated”, 1-3 rating of subjective marijuana intoxication (“low intoxication”), and 4-10 rating of
subjective marijuana intoxication (“moderate-intensive intoxication”). In total, we labeled a total of
32,722 sensor stream samples (unit: 5 minute-window) as not intoxicated (154 windows from the
self-initiated survey coded as 0 high, and 32,586 from the time-based self-reports), 423 sensor stream
samples as “low intoxication” (ratings between 1-3; and 772 sensor stream samples as “moderate-
intensive” (ratings between 4-10, where 10 = “a lot”).

Since we collected data from two devices (smartphone, Fitbit) the sample space for both devices 
were different. To make the results comparable we down sampled the mobile phone dataset by only 
keeping samples that were overlapping the available Fitbit data and combined the model sample 
space. As a result, we created three datasets (a) XGBoost-Mobile: mobile phone only samples, (b) 
XGBoost-Fitbit: Fitbit-only samples, and (c) XGBoost-MobiFit: mobile and Fitbit features 
combined.

2.8 Machine Learning Pipeline 
We began by partitioning the labeled sensor data into training (80%) and test (20% holdout) datasets 
through a random split. Subsequently, we conducted leave-10%-samples-out cross-validation (CV) 
while employing Synthetic Minority Over-sampling Technique (SMOTE) for over-sampling. To 
report the ultimate model evaluation, we utilized the reserved test data (i.e., the 20% unseen data).

Feature Selection, Hyper-Parameter Tuning and Cross-Validation
To avoid the effect of imbalanced data influencing model performance, in the training dataset, (1) we
first removed features with a correlation coefficient higher than 0.9 and (2) used feature selection to 
choose the features with the Gini coefficient [57] importance greater than 0.005. Higher Gini values 
indicate greater feature importance. We then tried both over-sampling with SMOTE and random 
under-sampling of the majority class (i.e., “not- intoxicated”), so that the three classes (“moderate-
intensive intoxication” (rating=4-10), “low-intoxication” (rating=1-3) and “not-intoxicated” 
(rating=0)) had the same number of training samples. Next, we leveraged Optuna [61] which uses 
Bayesian optimization to select the optimal combination of hyperparameters that maximizes the 
performance of the model. To ensure the accuracy of the hyperparameter results, we performed 10-
fold CV on the models corresponding to the parameter combinations selected by Optuna. The 10-fold
CV involves dividing the data into ten equal parts, training the model on nine parts, and evaluating 
the model's performance on the remaining part. This process is repeated ten times, with each of the 
ten parts used once for evaluation. By using this rigorous approach, we were able to select the 
optimal hyperparameters for our model, which ultimately led to higher accuracy and better 
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performance on the test data. After the best set of hyperparameters was selected, a final model was 
trained on the 80% training data. Then, the model performance was evaluated on the predictions 
made on the 20% unseen test data. Finally, we conducted an XAI analysis to better understand the 
decision-making process of our final predictive model. We generated tree SHapley Additive 
exPlanations (SHAP) explanations on the unseen test data, which ensured that our findings are 
explainable for the data that the model has not seen.  The entire study process is depicted in the 
diagram in Figure 3 below.

Figure 3. Study overview
2.9 Model Evaluation Metrics 
We focus on three key metrics to evaluate model performance: F1-score, recall and precision. To 
determine the best performing model, we select the model that maximizes the F1-score. The F1-score 
represents a balance between precision and recall [37], and for our desired use case, we need to 
maximize both precision and recall. Low precision means that we will have too many false positives 
(i.e., detecting marijuana intoxication when there is none) where we would mistakenly intervene or 
notify the participant. Too many false positives could erode trust in such an automated system. Low 
recall is also an issue, where we have too many false negatives (i.e., not detecting marijuana 
intoxication when the participant is intoxicated). An automated intervention system would not 
intervene when it should have and could result in participants unknowingly engaging in unsafe 
activities such as impaired driving under the influence of marijuana. Therefore, we focus on the F1-
score to evaluate our models, but also examine the resulting precision and recall. Specifically, given 
our imbalanced samples, we opted to use the AUC metric, which involves plotting the true positive 
rate (sensitivity or recall) against the false positive rate, and it offers a comprehensive performance 
assessment encompassing all conceivable classification thresholds. The AUC's resilience to class 
imbalance ensures a more comprehensive performance evaluation, providing a well-rounded 
perspective.
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2.10 Explainable AI (XAI): Interpretation Approaches for Black-Box Machine Learning 
Models 
To enhance the explainability of an algorithmic decision-making process, we utilized SHAP 
(SHapley Additive exPlanations), a widely used and influential interpretability method for machine 
learning models [53, 54]. Using SHAP to make predictions with explanations, our results provided 
valuable insights into the model's decision-making process. As such, we implemented a machine 
learning model to identify the top 30 most significant features associated with reports of marijuana 
intoxication. For these features, we generated feature importance, and SHAP summary graphs to 
better understand their contribution to the model's results (See Section 3.4). We chose to employ 
Gradient Boosted Trees due to their widespread use as state-of-the-art models. The utilization of tree 
SHAP in this context provides added advantages by diminishing the computation time for SHAP 
values from exponential to polynomial [53]. 

3. Results
3.1 Timing, Duration and Rating of Subjective Marijuana Intoxication 

Over the 30-day study window, participants had an average of 14 days of active study participation 
and a median of 13 days; 129 ESM self-initiated reports of marijuana use meeting criteria for 
inclusion in the analysis were collected: 101 reports of subjective marijuana intoxication (“feeling 
high” 1-10 out of 10), 28 reports of feeling “not high” (0). We assign high = 0 to events that do not 
involve the use of marijuana. 
Figures 4a and 4b show the distribution of self-reported subjective marijuana intoxication across 
participants. Most (n=75) episodes of subjective marijuana intoxication lasted between 30 min and 3 
hours, with 54 episodes having a reported duration up to 30 minutes (Fig. 4a). Marijuana use was 
most often reported between 10 pm and 11 pm (n=24). Figure 3b shows the distribution of ESM 
responses throughout the day. The average response latency to an ESM prompt was 55 minutes (SD 
= 48 minutes), excluding cases when the scheduled prompt expired. Most self-initiated reports of 
marijuana use occurred in the evenings: 14.0% between 6-9pm, and 38.8% between and 9pm-
midnight. On average, young adults rated their feeling of being high at 3.63 out of 10 (SD=2.72) 
when using marijuana (Fig. 4c).

     Figure 4. (a) Distribution of the duration of self-reported marijuana use episodes (n=129) across participants (left): x-
axis refers to the window of smoking episodes. From left (30-minute) to right (3-hours). (b) Distribution of the start time

of marijuana use episodes during the day (n=129) (middle) (c) Distribution of self-reported “feeling high” during
marijuana use (x-axis= 0-10 scale representing an intensity of feeling high, 10= a lot) from the self-initiated reports of

marijuana use (left). In our study, a value of 0 for the high report is labeled as “no-intoxication”
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3.2 Model Comparison: Mobile Only, Fitbit Only and Mobile and Fitbit Integration

The objectives of the first part of our analysis are 1) to explore whether smartphone-sensor features 
only can be used for real-time detection to identify behaviors during reports of subjective marijuana 
intoxication (“feeling high”), and 2) to explore whether Fitbit data can "add value" to the model 
performance to detect subjective marijuana intoxication based on smartphone-sensor features to 
justify the added burden of Fitbit data collection. In order to explore whether the Fitbit device can 
"add value" to modeling marijuana intoxication behaviors, we conducted experiments to compare 
three machine learning models with the eXtreme Gradient Boosting (XGBoost) classifier 1) 
Smartphone-sensors only (XGBoost-Mobile), 2) Fitbit features only (XGBoost-Fitbit), 3) 
Smartphone and Fitbit features combined model (XGBoost-MobiFit), and present our best model.

Figure 5. Model comparison to detect acute marijuana intoxication “low-intoxicated” (rating = 1–3) versus “moderate-
intensive intoxicated” (rating = 4–10) versus “not-intoxicated” (rating=0). XGBoost-MobiFit: phone sensors and Fitbit
(AUC = 0.99; Accuracy = 0.99) (left), XGBoost-Mobile: smartphone-based sensors (samples overlapping with Fitbit)

(AUC = 0.96; Accuracy = 0.97) (center) and XGBoost-Fitbit: Fitbit only (AUC = 0.97; Accuracy = 0.98) (right)  
Of the 3 models tested, the XGBoost-MobiFit model integrating the smartphone sensor with Fitbit
data had the best performance, with 99% accuracy, 92% precision, 79% recall, 85% F1-score, and
99% AUC on the test dataset (See Fig. 5). These metrics show the XGBoost-MobiFit model's ability
to  accurately  identify  subjective  moderate-intensive  intoxication  vs.  low-intoxication  vs.  not-
intoxicated. On the other hand, the Fitbit model (XGBoost-Fitbit) performed reasonably well, but not
as well as the XGBoost-MobiFit model in detecting marijuana intoxication. XGBoost-Fitbit achieved
an accuracy of 98%, 79% precision, 70% recall, 74% F1-score, and 97% AUC. These results suggest
that utilizing only Fitbit data might not be as accurate in detecting subjective marijuana intoxication
compared to the model integrated with smartphone sensor data. Based on these results, it can be
concluded that the extra burden of wearing and charging the Fitbit wearable is likely justified in
future deployments. The combined model (XGBoost-MobiFit), which utilizes both smartphone and
Fitbit  data,  demonstrates  improved  performance  in  detecting  subjective  marijuana  intoxication
compared to using smartphone or Fitbit data alone.

Table 1. Comparison of three XGBoost Models using features selected in detecting moderate-intensive marijuana
intoxication, low-intoxication, and not-intoxicated classes on the test dataset

Machine Learning
Model

AUC F1-score Recall Precision Accuracy

XGBoost-MobiFit 0.99 0.85 0.79 0.92 0.99

XGBoost-Mobile 0.96 0.72 0.75 0.70 0.97
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XGBoost-Fitbit    0.97 0.74 0.70 0.79 0.98

When Fitbit data are combined with Mobile data, we observed a significant improvement over the
Fitbit-only model. The mobile only model achieved an AUC of 96%, F1-score of 72%, and recall of
75%, and precision of 70%. These results suggest that the inclusion of Fitbit data adds value beyond
the utilization of smartphone-based sensor data alone (13% of improved F1-score). In summary, we
suggest  three  key  findings:  The  XGBoost-Mobile  model  had  the  lowest  performance  (F1-score
=0.72,  recall=0.75,  precision=0.70);  the  XGBoost-Fitbit  model  (F1-score  =0.74,  recall=0.70,
precision=0.79) also generally had lower performance than the combined model; and the XGBoost-
MobiFit was the best performing model:  F1-score (0.85), recall (0.79), and precision (0.92). In an
earlier section, we highlighted the need for high precision and recall, and thus focused on the F1-
score for identifying the best performing model.
3.3  Understanding  Model  Performance  in  Detecting  the  Risk  State  of  "Moderate  and  Intensive
Marijuana Intoxication” 

To understand the predictability of the risk state of “moderate-intensive intoxication”, our findings
show that the MobiFit model using sensor features integrated based on mobile and Fitbit devices,
outperformed  both  the  mobile  and  the  Fitbit  only  models  in  predicting  specifically  “moderate-
intensive intoxication”, with a substantial improvement of 20% and 18% in F1-score, respectively
(Table  2).  These  results  highlight  the  benefits  of  integrating  two  different  devices,  enhanced
precision  and  recall  for  the  moderate-intensive  intoxication  (MI)  class  compared  to  the  not-
intoxicated (N) and low-intoxicated (L) classes (Table 3).

Table 2. Performance comparison of three XGBoost models in detecting the subjective sense of moderate-Intensive
marijuana intoxication (MI) class.

ML Model MI Precision MI Recall MI F1–score MI AUC

XGBoost-MobiFit 0.89 0.76 0.82 0.99

XGBoost-Mobile 0.64 0.61 0.62 0.96

XGBoost-Fitbit    0.65 0.63 0.64 0.98

Table 3. Confusion matrix for (a) XGBoost-Mobifit (top), XGBoost-Mobile (middle), and XGBoost-Fitbit (bottom)
model; for three classes not-intoxicated (N), low-intoxication (L), and moderate-intensive intoxication (MI) classes

 XGBoost-MobiFit
Predicted

N L MI

Actual N 6541 7 13

L 29 50 1

MI 35 0 108

 XGBoost-Mobile
Predicted

N L MI

Actual N 6452 59 50

L 28 52 0

MI 56 0 87

XGBoost-Fitbit
Predicted

N L MI

Actual N 6499 14 48

L 41 39 0

MI 52 1 90
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The XGBoost-Mobile model exhibited a notably elevated false negative rate in the classification of 
instances labeled as “not-intoxicated”, often misclassifying them as “moderate-intensive 
intoxicated”. However, it exhibited a better discernment between “low-intoxicated” instances. In 
contrast, the XGBoost Mobifit model demonstrated a heightened true positive rate (TPR) in 
comparison to the other two machine learning models. This indicates that the XGBoost-Mobifit 
model accurately identified a significant proportion of moderate-intensive intoxication samples (the 
positive class) among the total samples belonging to that class. While the XGBoost-Mobile and 
Fitbit models achieved recall rates of 61% and 63%, respectively, in predicting individuals with 
moderate-intensive intoxication, it is noteworthy that they incorrectly predicted 56 and 53 out of 143 
actual moderate-intensive intoxication samples as other classes, respectively. In contrast, the best-
performing MobiFit model achieved 108 true positives out of the 143 actual moderate-intensive 
intoxication samples. This high precision suggests its strong performance. Despite this, it did miss 35
samples (as shown in Table 3).

3.4 Key Features Contributing to the Model Performance
To  specifically  explore  the  algorithms’  prediction  of  the  “risk”  state  of  “moderate-intensive
intoxication”, we utilized SHAP (Shapley Additive exPlanations) summary visualizations [53, 54] to
discern acute marijuana intoxication patterns. Through this analysis, we identified the main features
that significantly contributed to the predictability of the machine learning model gauged by mean
absolute  SHAP values  across  all  instances  as  well  as  specifically  targeting  “moderate-intensive
intoxication” classes. In this analysis, eXplainable Artificial Intelligence (XAI) categorized the labels
into two distinct groups: instances characterized by “moderate-intensive intoxication” and those in
“other classes” (encompassing “low-intoxication” and “not-intoxicated”). 
When interpreting the SHAP visualizations (Figs. 6 and 7), the length of each bar (graph on the left)
reflects  the  extent  of  the  corresponding  feature's  contribution.  Longer  bars  indicate  a  stronger
influence on prediction of the outcome. On the other hand, shorter bars have minimal impact on
prediction. The SHAP summary plots (e.g., graph on the right), illustrate how features influence the
moderate-intensive  intoxication  prediction  class.  These  plots  arrange  features  with  the  strongest
influence at the top. The graph visually demonstrates how features impact the MI prediction across
various values. The color shading indicates the direction in which the feature affects the prediction,
such that blue refers to low values, purple corresponds to median values, and red indicates high
values.  Plots extending to the left  make a negative contribution to the prediction,  whereas plots
extending to the right have a positive contribution to moderate-intensive intoxication prediction.
3.4.1 Impact of Average Key Features on Model Output Magnitude
The top five influential features in detecting the three classifications (Fig. 6, left) and affecting the
moderate-intensive intoxication outputs (Fig. 6, right) encompassed the impact of time of day, radius
of gyration, minimum heart rate, day of the week, and minutes awake during sleep. Among physical
activities  and  physiological  signals,  a  diverse  range  of  features  extracted  from various  sensors,
including those beyond time-based attributes from both mobile and Fitbit combined sensors, were
chosen as the top 30 crucial elements for distinguishing the three distinct classes: not-intoxicated
(N), low-intoxication (L), and moderate-intensive intoxication (MI). The SHAP value, signifying the
average  impact  magnitude  on  the  model's  output,  played  a  pivotal  role  in  establishing  this
determination (Fig. 5, left).
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Figure 6. Explanations generated by SHAP summary plot. Impact of features on best performing XGBoost-MobiFit
model (left) and binary model output identifying moderate-intensive intoxication (MI) (SHAP > 0) from non-moderate-

intensive intoxication (N and L) classes (SHAP < 0) (right)
3.4.2 Impact of Unique Key Features on the Mobile and Fitbit Model Outputs
Similar to the MobiFit model (our best model), the Mobile model also highlighted key features that
demonstrated overlapping impacts on the outcomes of the model.  The only exception lies in the
impact of specific movement and environmental context features, such as the number of Bluetooth
samples, moving time, Wifi average, percent total noise, maximum magnitude of acceleration, and
standard  deviation  of  latitude  (Fig.  6,  top  left  and  right).  On  the  other  hand,  the  Fitbit  model
exhibited an improved impact of four heart rate features, all of which ranked within the top 10 for all
three classes (Fig. 6, bottom left) as well as for the MI classes compared to the non-MI classes (Fig.
7, bottom right).
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Figure 7. Explanations generated by SHAP summary plot. Impact of features on XGBoost-Mobile model (top left) and
binary model output identifying moderate-intensive intoxication (MI) (SHAP > 0) from non-moderate-intensive

intoxication (N and L) classes (SHAP < 0) (top right), impact of features on XGBoost-Fitbit model (bottom left) and
binary model output identifying moderate-intensive intoxication (MI) (SHAP > 0) from non-moderate-intensive

intoxication (N and L) classes (SHAP < 0) (bottom right)

3.5 Key Features Explaining Moderate-Intensive Intoxication
To specifically examine the influence of features on the “risk” state of moderate-intensive marijuana 
intoxication, we present comprehensive details regarding the prediction of each individual key 
feature within the model.
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A partial dependence plot (PDP) (Fig. 8) provides information on the overall connection between a 
feature and the predicted outcome. The vertical axis represents SHAP values, signifying the effect of 
the chosen feature on predictions. The horizontal axis represents the real feature values across 
instances. Each plot point represents an instance's feature value and its corresponding SHAP value. 
An upward (rising) PDP slope indicates a positive impact of the feature on MI prediction, whereas a 
downward (decreasing) slope indicates a negative impact. To understand interactions between two 
features (min heart rate and sum of moving minutes presented in Fig. 8, top left), the surface on the 
PDP plot illustrates the combined impact of the two features on MI predictions. Greater values 
correspond to increased prediction values.

3.5.1 Elevated and Fluctuating Heart Rates
In the partial dependence plot, the SHAP values of minimum heart rates were significantly elevated 
from approximately 80 bpm (on average), peaking at 90 bpm and reaching up to 100 bpm (ranging 
from 60 bpm to 120 bpm, with a few data points exceeding 120 bpm), indicating moderate-intensive 
self-reported marijuana intoxication (SHAP value > 0) in young adults compared to other (not- and 
low-intoxicated) classes. The SHAP values clearly demonstrate a positive increase in minimum heart
rate associated with a higher likelihood of self-reported moderate to intensive marijuana 
intoxication, irrespective of the impact of sum of moving minutes. The total moving minutes during 
self-report of moderate-intensive intoxication had an impact on elevations in the minimum heart rate,
as shown in Fig. 8 (top left), where values in red refer to moving for max 5 minutes (our analysis 
employs 5-minute units). While heart rate can fluctuate due to various factors, as indicated by 
previous studies, including physical movements, consumption of substances like alcohol, caffeine, 
meal intake, and mental status (e.g., stress, anxiety), further investigation would be needed to explore
impact of other factors.

Figure 8. Interaction effects of total moving minutes on minimum heart rate values (top left), standard deviation (top
middle), and skewness (top right) of heart rates, and an explanation of skewness [65] (bottom)
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The data patterns for the standard deviation of heart rates exhibited fluctuations, but, in general, 
showed an increase when young adults reported moderate-intensive intoxication (Fig. 8, top middle).
Negative skewness (“left-skewed” or “left-tailed”) in heart rates was consistently linked with 
moderate-intensive intoxication. This indicates that there were more heart rate data points on the 
right side of the mean (referring to that the median is greater than the mean), resulting in a 
distribution stretched towards higher heart rate values (Fig. 8, top right).

3.5.2 Decreased Large-Scale Movements and Shifts in Micro-Movement Patterns
During states of moderate to intensive intoxication,  individuals exhibited  a tendency to manifest
relatively restricted large-scale movement, often limited to a radius of approximately 5 km. Notably,
instances with radius  of gyration data exceeding approximately 10 km were not  associated with
moderate to intensive intoxication. This observation implies that when in a state of self-reported
moderate to intensive intoxication (rated 4-10), young adults exhibited a decreased inclination for
extensive travel (Fig. 9, top left). Nonetheless, they still demonstrated movement within a radius of 5
km. 

Figure 9. Influence of radius of gyration (unit: meters) (top left), average angles of XY (top middle) and YZ (top right),
and reference: smartphone angles extracted from accelerometer sensors (bottom) 

We presented the alterations in phone angles, as recorded by accelerometers, during episodes of 
moderate-intensive intoxication. Notably, the decrease in average XY-axis angles and the concurrent 
increase in YZ-axis angles exhibited a correlation with moderate-intensive intoxication levels (Fig. 9,
top right). Interpreting the positive or negative values (-150 or +150) concerning how individuals 
who report being intoxicated utilize their smartphones may not be entirely straightforward. However,
as “the axis directions and device side names remain consistent, regardless of the device’s 
orientation” (Fig. 9, bottom right), the findings might indicate the occurrence of recurrent bodily 
movements when the phone is worn or hand movements when the phone is held. These movements 
may serve to identify imbalanced states in which young adults could potentially transiently have less
control of their body movements (i.e., less physical coordination) when experiencing moderate to 
intensive intoxication (SHAP value > 0) under the influence of marijuana compared to their body 
movements when not- and low-intoxicated (SHAP value < 0). 

3.5.3 Elevated Surrounding Noise Energy
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Interestingly, while the variance of audio noise energy increased (with data points deviating further 
from the mean), the mean noise energy demonstrated a decrease, yet it overall exhibited an upward 
trend (Fig. 10 left). During phone conversations, young adults who reported moderate-intensive 
intoxication displayed discernible voice activity. However, their speaking voice energy via our 
conversation plug-in exhibited no significant changes that could serve as indicators of marijuana 
intoxication (Conversely, the number of conversation samples holds significance in the mobile 
model, as presented in Fig. 7, top). Intriguingly, instances involving individuals reporting moderate-
intensive marijuana intoxication revealed an increase in vocal variability, coupled with a subsequent 
reduction (Fig. 10, middle).

Figure 10. Influence of mean (left) and standard deviation (middle) noise energy, and standard deviation voice energy
(right) (unit: Joule)

The analysis of surrounding sounds can provide valuable insights into the specific environments 
where individuals reporting moderate-intensive marijuana intoxication might be situated. This could 
encompass moments of marijuana smoking, socializing with friends, or engaging with media such as
television or music. It's important to note that while GPS-generated features were the primary 
indicators, self-reported moderate-intensive marijuana intoxication might or might not directly link 
to places like shared social spaces (e.g., lounge), bars, pubs or clubs. Nevertheless, it remains 
plausible that young adults who report moderate-intensive marijuana intoxication may choose to 
stay in noisy surroundings. 

3.5.4 Prolonged Sleep Patterns
We identified distinct sleep patterns linked to episodes of self-reported moderate-intensive 
intoxication. Notably, individuals who reported moderate-intensive marijuana intoxication (rated 4-
10 out of 10) demonstrated extended sleep durations, spanning approximately 8 to 11 hours (Fig. 11, 
left) the day before self-reported intoxication. In contrast, instances with low or no reported 
intoxication tended to correspond to the healthy range of sleep durations, typically averaging around 
6-7 hours of sleep, although some sleep patterns were as short as 2 hours. 
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Figure 11. Total sleep duration (left), minutes awake during sleep (center), and sleep start time (right)

Interestingly, there was a positive correlation between the duration of minutes awake after falling 
asleep and self-reported moderate-intensive marijuana intoxication, particularly within a specific 
timeframe (sleep min awake < 50 minutes). However, an increase in extended minutes awake after 
falling asleep (if > 50 minutes, extending beyond approximately an hour) did not show any 
significant association with a likelihood of moderate-intensive marijuana intoxication (Fig. 11, 
center). Regarding sleep start times, the data indicated peaks at both 11 pm and early morning hours, 
with a rise in sleep start times continuing until around 4 am (Fig. 11, right). 
To summarize our findings, elevated minimum heart rate values were clearly linked to a higher 
likelihood of self-reported moderate-intensive marijuana intoxication. However, we observed that 
travel patterns did not appear to increase. Phones angles displayed a likelihood of decrease or 
increase contingent on specific angles and young adults were positioned in discernibly noisy 
environments, but their speaking voice did not show any significant changes associated with 
moderate-intensive marijuana intoxication. Interestingly, extended sleep hours and minutes awake 
during sleep [64] the day before self-reported marijuana intoxication were associated with self-
reported moderate-intensive marijuana intoxication.   
3.6 Additional Analyses for Real-World Feasibility 
To enhance the practicality of our machine learning model in real-world settings, we conducted 
supplementary analyses to evaluate our top-performing model, the XGBoost-MobiFit model, under 
different scenarios. These scenarios involved: (1) excluding location data, as some individuals might 
have privacy concerns about GPS collection or might have deactivated it during the study despite 
giving consent to researchers; (2) excluding sleep data in cases where users might not provide sleep 
information; and (3) excluding both location and sleep data. This approach aims to investigate the 
feasibility of offering more adaptable data collection options, potentially addressing privacy 
concerns. 
In brief, the performance of the model excluding location features (XGBoost-MobiFit-GPS 
excluded) decreased 15% of F1-score compared to the best model. The sensitivity (recall) decreased 
10%. Regarding exclusion of sleep data, analysis revealed a 24% (XGBoost-MobiFit-Sleep 
excluded) decrease in the F1-score compared to the performance of the best model. Upon excluding 
GPS and sleep features, the model (XGBoost-MobiFit-GPS-Sleep excluded) experienced a 16% 
reduction in F1-score (Table 7) and exhibited the lowest recall (Table 8) in identifying self-reported 
moderate-intensive marijuana intoxication classes, when compared to the best-performing model. 
Please refer to the Supplemental material (Appendix 4) for a detailed description of these additional 
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analyses and results.

4. Discussion
Overview 
The ability to detect subjective report of acute marijuana intoxication (“feeling high”) in the natural 
environment using mobile sensors has the potential to enable Just-In-Time interventions [47] to 
reduce marijuana-related harms. To the best of our knowledge, this is the first study that 
demonstrates the impact of integrating smartphone-based and wearable sensor features on the 
enhancement of the predictability and interpretability of algorithms in detecting acute marijuana 
intoxication in naturalistic environments. As hypothesized, first, we found that the XGB-Mobifit, 
smartphone sensor-based and Fitbit combined features with the eXtreme Gradient Boost Machine 
(XGBoost) outperformed (F1-score: 0.85) the mobile and Fitbit only machine learning models. 
Combining Fitbit and smartphone data (XGBoost-MobiFit) significantly enhanced model 
performance by 13% compared to the smartphone-sensor only (XGBoost-Mobile) and by 11% 
compared to the Fitbit sensor only (XGBoost-Fitbit) model. Furthermore, XAI visualizations 
highlighted the significance of key sensor features, including elevated heart rates (ranked 3rd) as 
hypothesized as an indicator, reduced large-scale movements (ranked 2nd), alterations in micro-
movement patterns, increased ambient noise energy, and disrupted sleep patterns (ranked in Top 30). 
These findings were observed beyond the influences of time of day and day of the week features 
(ranked 1st and 4th, respectively), as validated in [55], particularly during instances of self- reported 
subjective marijuana intoxication in naturalistic environments. Our findings demonstrate the promise
that mobile phone sensors, tested for subjective cannabis intoxication in young adults [55] and 
alcohol intoxication in young adults [2, 3, 51], combined with wearable sensors, hold for automated, 
explainable and unobtrusive detection of acute subjective marijuana intoxication in the natural 
environment.
4.1 Interpretable Physiological Biomarkers of Marijuana Intoxication in Real-World Settings
To explain the results of the black-box machine learning models to detect marijuana intoxication in 
“everyday settings”, our study, which integrated sensors from smartphones and wearable devices, 
identified key sensor features and used XAI to facilitate interpretation of model results. As our 
results are consistent with prior research conducted in controlled laboratory settings that 
consistently found an acute increase in resting heart rate following marijuana use [19, 27, 50], using
heart rate - minimum heart rate within a 5-minute analysis window in our study - as an objective 
biomarker could be a valuable tool for detecting marijuana intoxication “outside of laboratory 
settings”. Although it is not as clear as the literature identified resting heart rate, minimum resting 
heart rate plays a key role in contributing to the detection of self-reported marijuana intoxication. 
Other physiological signals, such as respiration, can be incorporated with heart rate to better capture 
marijuana intoxication [63]. While many factors can affect heart rate, our study yielded significant 
heart rate features and insights from the elevated heart rate patterns during self-reported acute 
marijuana intoxication. Subsequent research could delve into the associations between heart rate and 
additional physiological and behavioral indicators of marijuana use.
The use of explainable artificial intelligence (XAI) visualization could help increase transparency 
and accountability when conducted as part of a substance use detection system [51]. It is promising 
to use XAI because it can enable researchers and clinicians to learn about how the algorithms arrived
at the decisions and identified key attributes, providing an opportunity to improve the accuracy of 
detection and reliability and increase trust over time. Ultimately, it is up to each individual to weigh 
the potential benefits of a detection and intervention system against privacy concerns and personal 
values.  
4.2  Enhancing  Participant  Engagement  for  Improved  Feasibility  in  Data  Collection
Deployment: Strategies to Ensure Privacy Preservation
To  elucidate  the  advantages  of  employing  combined  sensor  features  from  two  devices  while

https://preprints.jmir.org/preprint/52270 [unpublished, non-peer-reviewed preprint]



JMIR Preprints Bae et al

addressing  potential  privacy  concerns,  particularly  related  to  location  data,  we  aim  to  offer
participants  additional  configuration  choices  rather  than  resorting  to  study  withdrawal  for  GPS
sensor deactivation. This is demonstrated by our testing of the best-performing model, XGBoost-
MobiFit, wherein we excluded location features. The analysis revealed a 15% (XGBoost-MobiFit-
GPS  excluded)  decrease  in  the  F1-score  compared  to  the  performance  of  the  best  model.  As
proposed by Bae et al. [51], collecting GPS data and utilizing rounded GPS data extraction (i.e., less
precise location data) could be a viable approach. This avoids the use of raw latitude and longitude,
which may contain sensitive information about specific locations. Researchers and clinicians could
consider providing alternative options instead of completely disabling GPS, as it contributes to the
accuracy of the model.
Moreover, in order to assess the efficacy of our top-performing model in the context of real-time
detection when young adults are consuming marijuana, we conducted tests after excluding sleep-
related  features  (see  Appendix  4  in  the  supplementary  material).  The  analysis  revealed  a  24%
(XGBoost-MobiFit-Sleep excluded) decrease in the F1-score compared to the performance of the
best model. This scenario might be applicable when individuals remove the wristband during sleep or
opt to take off the device due to discomfort while sleeping. Alternatively, the situation could arise if
individuals forget to reattach the device after taking a shower at night. There is a trade-off between
model  performance  and  a  privacy-preserving  approach.  While  participants  may  find  benefits  in
having the option to disable sensors when necessary, it is important to note that this could potentially
lead to a decrease in the predictability of acute marijuana intoxication. 
We believe that by building a system that prioritizes privacy and user autonomy, we can provide a
valuable tool to reduce marijuana-related harm to both individuals and society as a whole. In the
future, when the model is paired with an intervention, the intervention could be isolated to the one’s
own devices, but there are instances when sharing information (with the person’s consent) about
marijuana use episodes with clinicians or one’s social support network could be valuable. This is all
to say that while the technical aspects of our detection system can be applied in a way to minimize
invasiveness from a privacy perspective, each user will have to decide for themselves whether the
value that a detection and intervention system provides is worth the tradeoff to minimize marijuana-
related harms to self and the broader community.

5. Limitations and Future Work
We now describe some limitations of our work. First, we used subjective self-reports reports as 
ground-truth for training our machine learning model to identify marijuana intoxication. This study 
extends prior ESM work which codes self-reported marijuana use as yes or no [43] by asking 
participants to rate marijuana intoxication from 0-10, which may be subject to recall or other biases 
in reporting. The classification scheme of low-intoxication (1-3), moderate-intensive marijuana 
intoxication (4-10), and not-high (0) could potentially lead to classification errors. The broad 
categorization might overlook nuanced differences within these categories, which could affect the 
accuracy of the classifiers. We plan future analyses to examine the performance of mobile and 
wearable sensors (smartphone-based and Fitbit) against different thresholds for a subjective 
marijuana intoxication outcome. Another limitation was the level of compliance (63%) in completing
the morning, afternoon, and evening surveys, which could be improved, since no reminders were 
provided to facilitate completion. We do not know if all episodes of marijuana use were reported by 
participants, which could limit model performance. As discussed, there is not yet a real-time 
biological test that could be used as the gold standard against which to validate self-reported 
subjective marijuana intoxication or marijuana-related impairment. We collected up to 30 days of 
daily data, in 33 young adults, which provided a starting point for the analyses, but results warrant 
replication in a larger sample, and over longer periods of daily data collection. Our findings may not 
be generalizable beyond young adults, recruited from the community, who were not seeking 
treatment, living in an area where non-medical use of marijuana is illegal. Finally, our model 
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performed the best when tested on the same people that the model was trained on (there was no 
overlap between training and testing data). While there is a valid use case for this, it assumes that we 
can always collect labeled training data for participants for whom we would like to apply the model. 
With a larger test population, exploration of more sophisticated (possibly multi-sensor) features, and 
improved tuning of models, we hope that our future refined models will generalize to new 
participants from whom no training data would be required. To obtain generalizability, continued 
development of the model to establish norms in a larger sample is needed. At the same time, our 
model needs to be improved to be applied to unseen new participants. When examining heart rate, it 
is important to also track activities, body movements, and environmental context (e.g., day, time, 
location) because an acute increase in heart rate by itself is non-specific and may not be associated 
with onset of smoking marijuana. False alarms triggered by the algorithm could erode trust in an 
automated system, whereas low sensitivity to actual marijuana use could result in marijuana-related 
harm. Therefore, it is important to investigate the interplay between human activities associated with 
marijuana intoxication and physiological signals in a larger population, and how these interactions 
can contribute to intervention delivery in real-world contexts.
Our models used a 5-minute window size for classifying self-reported marijuana intoxication: 
“moderate-intensive intoxication” vs. “low-intoxication” vs. not-intoxicated, using smartphone and 
Fitbit combined features. We suggest that as 5-minute windows are quite frequent in the context of a 
marijuana usage session (more than half of our participants’ sessions > 30 minutes), our best 
performing model could be used to detect self-reported marijuana intoxication in near real-time, and 
thus trigger interventions in near real-time. The ability to intervene in near real-time is important 
because participants could return to daily activities (e.g., bicycle or e-bike, drive a car) when they are
no longer feeling high, but THC still remains in their body affecting their cognitive function and 
motor coordination [31]. Detecting marijuana episodes and intoxication can be an important first step
toward intervening in a timely manner to assist people who are under the influence of marijuana. 
Our best detection model is unlikely to misclassify a "high" state as not-high, which demonstrates the
possibility of using our detection algorithm with unseen data in the real-world context. On the unseen
test set, we obtained 85% precision (92% precision for three classes) in specifically identifying self-
reported moderate-intensive marijuana intoxication. Passive sensing using smartphones-based 
sensors has been investigated in the context of alcohol intoxication [2, 3, 51], and here we extend this
previous research to self-reported marijuana intoxication [55] beyond smartphone-based sensors, 
which can ultimately be useful for JIT interventions [47] having benefits of integrated mobile phone 
and wearable sensors to reduce marijuana-related harm. The value to society and to individuals of 
reducing marijuana-related harm is obvious. As a personal decision to support detection of acute 
marijuana use, individuals who use marijuana, for example, would keep their phone charged and 
with them when they are using marijuana, and wear a device (e.g., Fitbit) and keep it charged as well.
Our detection model is simple enough that the collected data never needs to leave their phone, since 
feature extraction could be run on the phone, along with the model itself. This reduces privacy 
concerns somewhat. 

6. Conclusions
Our study demonstrates that an integration of smartphone-based sensors and wearable features from 
Fitbit improves the detection of self-reported subjective acute marijuana intoxication in the natural 
environment among young adults. A combination of smartphone sensor and Fitbit features 
(XGBoost-MobiFit model) achieved the best F1-score (0.85) balancing between sensitivity and 
specificity in detecting self-reported moderate-intensive marijuana intoxication compared to self-
reported low-intoxication and not-intoxicated. Results suggest that Fitbit data improved XGBoost 
performance (additional 13% F1-score) in detecting self-reported marijuana intoxication (vs not-
intoxicated), over and above the smartphone sensor model only, which potentially justifies the added 
burden of wearing Fitbit for detection among young adults. Key smartphone and Fitbit sensor 
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features associated with self-reported “moderate-intensive intoxication” included an extended set of 
statistical measures leveraging elevated minimum, standard deviation and skewness of heart rates, 
and changes of smartphone angles, increased average surrounding noise energy, smaller radius of 
gyration in the immediate environment, and prolonged sleep patterns the night before self-reported 
marijuana intoxication. Future work includes refining the smartphone and Fitbit sensor algorithm in 
larger samples and exploring the use of the algorithms generated by explainable AI to support the 
design of Just-In-Time interventions for clinicians to deliver context-adaptive personalized 
interventions to minimize potential marijuana-related harms (e.g., intoxicated driving). These harm 
reduction interventions could reduce the frequency and severity of acute marijuana-related harm in 
young adults.
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Abbreviations

N              not-intoxicated
L              low-intoxication
MI            moderate-intensive intoxication
THC         delta-9 tetrahydrocannabinol
HR            heart rate
ESM         experience sampling method
API           application programming interface
MobiFit    Mobile and Fitbit sensors combined
XGBoost  eXtreme Gradient Boosting Machine classifier
SMOTE    synthetic minority over-sampling technique
Optuna      hyperparameter optimization framework
CV            cross-validation
AUC         Area Under the ROC Curve
TPR          true positive rate
XAI          explainable artificial intelligence
SHAP       SHapley Additive exPlanations
PDP          partial dependence plot
JITAI        just-in-time adaptive intervention
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